The results of the molecular-mechanics analysis compare well with the experimental structure, taking into account that the potential-energy function applied was fitted to gas-phase data. The central $\mathrm{C}-\mathrm{C}$ and the $\mathrm{C}=\mathrm{N}$ bond lengths show therefore some deviation. The distortion of the tert-butyl groups as reflected in the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles is well calculated.

We thank D. J. Stufkens of the University of Amsterdam for providing the crystals.

Cooperation with K. Rasmussen of the Technical University of Denmark (Lyngby) is gratefully acknowledged.

The investigations were supported in part (ALS) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

References

Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C410.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Exner, O. \& Kliegman, J. M. (1971). J. Org. Chem. 36, 2014-2015.
Fernholt, L., Rømming, C. \& Samdal, S. (1981). Acta Chem. Scand. Ser. A, 35, 707-715.

Graham, A. J., Akrigg, D. \& Sheldrick, B. (1983). Acta Cryst. C39, 192-194.
Hargittal, I. \& Seip, R. (1976). Acta Chem. Scand. Ser. A, 30, 540-546.
Huige, C. J. M. (1984). Thesis, Univ. of Utrecht. To be published.
Jeffrey, G. A., Ruble, J. R. \& Pople, J. A. (1982). Acta Cryst. B38, 1975-1980.
Keijsper, J., van der Poel, h., Polm, L. H., van Koten, G., Vrieze, K., Seignette, P. F. A. B., Varenhorst, R. \& Stam, C. (1983). Polyhedron, 2, 1111-1116.

Kliegman, J. M. \& Barnes, R. K. (1970). Tetrahedron, 26, 2555-2560.
K veseth, K., Seip, R. \& Kohl, D. A. (1980). Acta Chem. Scand. Ser. A, 34, 31-42.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mugnoli, A. \& Simonetta, M. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1831-1835.
Niketic, S. R. \& Rasmussen, K. (1977). The Consistent Force Field: A Documentation. In Lecture Notes in Chemistry, Vol. 3. Heidelberg: Springer Verlag.
Rasmussen, K. (1983). J. Mol. Struct. 97, 53-56.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Spek, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.

Structures of Inorganic Rings as Antitumor Agents. IV.* Structure of 1,3,3,5,5-Pentakis(1-aziridinyl)-1 $\lambda^{6}, 2,4,6,3 \lambda^{3}, 5 \lambda^{5}$-thiatriazadiphosphorine 1-Oxide Monohydrate, $\mathrm{C}_{10} \mathrm{H}_{\mathbf{2 0}} \mathrm{N}_{\mathbf{8}} \mathrm{OP}_{\mathbf{2}} \mathrm{S} . \mathrm{H}_{\mathbf{2}} \mathrm{O}$

By Jean Galy \dagger and Renée Enjalbert
Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31400 Toulouse CEDEX, France

and Jean-François Labarre
Laboratoire Structure et Vie, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX, France
(Received 6 February 1984; accepted 20 September 1984)

Abstract. $M_{r}=380$, monoclinic, $P n, a=8.440$ (9), $b=8.037$ (5), $c=12.81$ (1) $\AA, \quad \beta=92.87$ (6) ${ }^{\circ}, \quad V=$ 868 (1) $\AA^{3}, \quad Z=2, \quad D_{x}=1.385(5), \quad D_{m}=$ $1.37(4) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda\left(\right.$ Mo $\left.K \frac{x}{\alpha}\right)=0.71069 \AA, \quad \mu=$ $0.34 \mathrm{~mm}^{-1}, F(000)=400, T=293 \mathrm{~K}$. Final $R=0.039$ for 1907 unique observed reflections. The crystal structure consists of $\mathrm{N}_{3} \mathrm{P}_{2} \mathrm{SO}\left(\mathrm{NC}_{2} \mathrm{H}_{4}\right)_{5}$ entities

[^0]associated with one $\mathrm{H}_{2} \mathrm{O}$ molecule. The vicinity of $\mathrm{H}_{2} \mathrm{O}$ and cyclophosphazenic molecules induces a disorder both of the O atom and of the aziridinyl group fixed on the S atom of the $N_{3} \mathrm{P}_{2} \mathrm{~S}$ ring. The two new conformations exhibited by this molecule are one more example of its outstanding versatility.

Introduction. Some thiatriazadiphosphorines belonging to the $\left(\mathrm{NPaz}_{2}\right)_{2}(\mathrm{NSOX})$ family with $X=\mathrm{F}$, phenyl, or aziridinyl (az) have proved to exhibit a remarkable antitumor activity (Labarre, 1982).

The compound $1,3,3,5,5$-pentakis(1 -aziridinyl)- $1 \lambda^{6}$,$2,4,6,3 \lambda^{5}, 5 \lambda^{5}$-thiatriazadiphosphorine 1 -oxide, $\left\{\mathrm{NP}\left[\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right]_{2}\right\}_{2}\left[\mathrm{NSON}\left(\mathrm{CH}_{2}\right)_{2}\right]$, named SOaz for convenience, exhibits two allotropic varieties, the former crystallizing in the orthorhombic system, i.e. $\mathrm{SOaz}(\mathrm{I})$, the latter in the monoclinic system, i.e. $\mathrm{SOaz}(\mathrm{II})$. The outstanding feature, emphasized by a thorough crystallographic study (Galy, Enjalbert, van der Huizen, van de Grampel \& Labarre, 1981), is the conformations adopted by this molecule which are quite different for the unique molecule of $\operatorname{SOaz}(\mathrm{I})$ and for the two crystallographically independent molecules of $\mathrm{SOaz}(\mathrm{II})$, namely $\mathrm{SOaz}(\mathrm{II} A)$ and $\mathrm{SOaz}(\mathrm{II} B)$, where the settings of the aziridinyl ligands drastically differ from each other. A further allotropic variety exists at 'high' temperature, named SOaz(III) (Galy \& Enjalbert, 1980, unpublished results), which has been characterized by the powder diffraction method.

When injected as a medication, $\mathrm{SOaz}(\mathrm{II})$ produced as a powder is dissolved in physiological serum. It is highly soluble $\left(0.45 \mathrm{~g} \mathrm{~L}^{-1}\right)$. It would be of great importance to know the exact conformation of SOaz when injected as an antitumor drug. With this aim, one of us (RE) started growing crystals of SOaz from a water solution. Single crystals were finally obtained after gentle evaporation of the solution for five weeks. The crystallographic analysis revealed a new moiety, the SOaz monohydrate, $\left(\mathrm{NPaz}_{2}\right)_{2}(\mathrm{NSOaz}) . \mathrm{H}_{2} \mathrm{O}$, conveniently named hereafter $\mathrm{SOaz}(W)$.

Experimental. Colorless block, trigonal prism form ($h=0.4 \mathrm{~mm}, r_{\text {basis }}=0.3 \mathrm{~mm}$), CAD-4 Nonius diffractometer, graphite-monochromated Mo $K \alpha$; take-off angle $=2 \cdot 5^{\circ} ; 25$ reflections with $3<\theta<20^{\circ}$ used for measuring lattice parameters; space group (identified by precession method) verified by rapid measurement of $h 0 l, h k 0$ and $0 k l$ reflections to check the rotation $h 0 l$, $h+l=2 n$, implying $P 2 / n$ or $P n$ space group. For data collection $\theta_{\text {max }}=30^{\circ} ; \theta-2 \theta$ scan with $\Delta \theta$ scan $=$ $1 \cdot 1^{\circ}+0.35^{\circ} \tan \theta$, prescan speed $=10^{\circ} \min ^{-1} \cdot \sigma(I) / I$ for final scan: 0.018 ; max. time for final scan: 80 s ; standard reflections $013,0,0,10,402$ measured after periods of 3600 s , no significant variation during whole data collection; 1976 unique reflections measured, range of $h k l: h-11 \rightarrow 11, k 0 \rightarrow 11, l 0 \rightarrow 17$; Lorentz and polarization factors; no absorption correction. Structure resolution and refinement: 1907 reflections with $I>3 \sigma(I)$ utilized; direct methods; full-matrix least squares (F); because of the selected space group Pn, x and z atomic coordinates fixed for one atom; anisotropic thermal parameters for all non-H atoms; H atoms in aziridinyl group positioned according to Dermer \& Ham (1969), i.e. $\mathrm{C}-\mathrm{H}=0.97 \AA$, H-$\mathrm{C}-\mathrm{H}=116^{\circ}$ and isotropic thermal parameters $U\left(\mathrm{H}_{i}\right)$ $=U_{\mathrm{eq}}\left(\mathrm{C}_{i}\right)+0.015 \AA^{2} ; \mathrm{H}$ atoms of the water molecule not included; 242 refined variable parameters. R $=0.0385, R_{w}=0.0396, w=1, S=0.624$. Max. and

Table 1. Positional and equivalent isotropic thermal parameters of non -H atoms, with their e.s.d.'s in parentheses

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
S	0.0332 (2)	0.1649 (2)	0.6127 (1)	0.0459 (7)
$\mathrm{P}(1)$	$0.28{ }^{+}$	$0 \cdot 3284$ (1)	$0.72 \dagger$	0.0308 (5)
$\mathrm{P}(2)$	$0 \cdot 2988$ (2)	0.2579 (2)	0.5088 (1)	0.0332 (5)
$\mathrm{O} A$	-0.0739 (10)	0.0434 (11)	0.6286 (6)	0.053 (5)
OB	0.0177 (11)	-0.0239 (10)	0.6327 (6)	0.051 (5)
W	-0.2663 (7)	-0.2204 (8)	0.6936 (4)	0.096 (4)
$\mathrm{N}(1)$	$0 \cdot 1105$ (5)	0.2366 (6)	0.7139 (3)	0.041 (2)
N (2)	0.3591 (5)	0.3520 (5)	0.6121 (3)	0.036 (2)
$\mathrm{N}(3)$	0.1318 (5)	0.1679 (6)	0.5147 (3)	0.044 (2)
$\mathrm{N}(4) A$	-0.0807 (11)	0.3507 (14)	0.5911 (7)	0.042 (5)
$\mathrm{N}(4) \mathrm{B}$	-0.1360 (10)	0.2104 (16)	0.5712 (8)	0.056 (6)
N(5)	0.2589 (6)	0.5022 (6)	0.7850 (4)	0.047 (2)
N (6)	0.4086 (5)	0.2325 (6)	0.8010 (3)	0.043 (2)
N (7)	0.2888 (5)	0.3819 (6)	0.4044 (3)	0.047 (3)
$\mathrm{N}(8)$	0.4376 (5)	0.1270 (6)	0.4733 (4)	0.048 (3)
$\mathrm{C}(1) \mathrm{A}$	-0.2287 (13)	0.3236 (22)	0.5254 (10)	0.069 (8)
$\mathrm{C}(2) \mathrm{A}$	-0.2391 (23)	0.3633 (25)	0.6316 (16)	0.069 (11)
C(1)B	-0.1700 (24)	0.3835 (23)	$0 \cdot 5822$ (14)	0.076 (11)
$\mathrm{C}(2) B$	-0.2425 (16)	0.2640 (27)	0.6498 (13)	0.067 (9)
C(3)	0.2000 (9)	0.6560 (8)	0.7359 (6)	0.067 (4)
$\mathrm{C}(4)$	0.3669 (8)	0.6419 (7)	0.7706 (6)	0.063 (4)
C(5)	0.3546 (9)	0.1541 (12)	0.8957 (6)	0.089 (5)
C (6)	0.4029 (10)	0.0506 (9)	0.8067 (7)	0.080 (5)
$\mathrm{C}(7)$	0.2190 (7)	0.5461 (8)	0.4159 (5)	0.060 (4)
C (8)	0.3881 (7)	0.5316 (9)	0.4058 (5)	0.058 (4)
C(9)	0.3943 (8)	-0.0229 (9)	0.4108 (5)	0.066 (4)
$\mathrm{C}(10)$	0.4441 (9)	-0.0394 (9)	0.5204 (6)	0.072 (4)

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with their e.s.d.'s in parentheses

$\mathrm{P}(1)-\mathrm{N}(1)$	1.608 (4)	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2)$	$115 \cdot 3$ (2)
$\mathrm{P}(1)-\mathrm{N}(2)$	1.576 (4)	$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{P}(2)$	122.8 (3)
$\mathrm{P}(2)-\mathrm{N}(2)$	1.586 (4)	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{N}(3)$	115.2 (2)
$\mathrm{P}(2)-\mathrm{N}(3)$	1.589 (5)	$\mathrm{P}(2)-\mathrm{N}(3)-\mathrm{S}$	$124 \cdot 3$ (3)
$\mathrm{S}-\mathrm{N}(1)$	1.535 (4)	$\mathrm{N}(3)-\mathrm{S}-\mathrm{N}(1)$	117.3 (3)
$\mathrm{S}-\mathrm{N}(3)$	1.540 (4)	$\mathrm{S}-\mathrm{N}(1)-\mathrm{P}(1)$	123.5 (3)
$\mathrm{P}(1)-\mathrm{N}(5)$	1.640 (5)	$\mathrm{N}(5)-\mathrm{P}(1)-\mathrm{N}(6)$	99.4 (2)
$\mathrm{N}(5)-\mathrm{C}(3)$	1.463 (8)	$\mathrm{P}(1)-\mathrm{N}(5)-\mathrm{C}(3)$	123.0 (4)
$\mathrm{N}(5)-\mathrm{C}(4)$	1.464 (8)	$\mathrm{P}(1)-\mathrm{N}(5)-\mathrm{C}(4)$	120.3 (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.460 (10)	$\mathrm{C}(3)-\mathrm{N}(5)-\mathrm{C}(4)$	59.8 (4)
$\mathrm{P}(1)-\mathrm{N}(6)$	1.654 (4)	$\mathrm{P}(1)-\mathrm{N}(6)-\mathrm{C}(5)$	120.0 (4)
$\mathrm{N}(6)-\mathrm{C}(5)$	1.460 (9)	$\mathrm{P}(1)-\mathrm{N}(6)-\mathrm{C}(6)$	118.3 (4)
N(6)-C(6)	1.465 (8)	$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(6)$	$61 \cdot 0$ (6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.485 (12)		
$\mathrm{P}(2)-\mathrm{N}(7)$	1.666 (5)	$\mathrm{N}(7)-\mathrm{P}(2)-\mathrm{N}(8)$	99.7 (2)
$\mathrm{N}(7)-\mathrm{C}(7)$	1.456 (8)	$\mathrm{P}(2)-\mathrm{N}(7)-\mathrm{C}(7)$	117.7 (4)
$\mathrm{N}(7)-\mathrm{C}(8)$	1.466 (8)	$\mathrm{P}(2)-\mathrm{N}(7)-\mathrm{C}(8)$	118.4 (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.445 (9)	$\mathrm{C}(7)-\mathrm{N}(7)-\mathrm{C}(8)$	59.3 (4)
$\mathrm{P}(2)-\mathrm{N}(8)$	1.655 (5)	$\mathrm{P}(2)-\mathrm{N}(8)-\mathrm{C}(9)$	120.4 (4)
$\mathrm{N}(8)-\mathrm{C}(9)$	1.483 (8)	$\mathrm{P}(2)-\mathrm{N}(8)-\mathrm{C}(10)$	118.6 (4)
$\mathrm{N}(8)-\mathrm{C}(10)$	1.467 (8)	$\mathrm{C}(9)-\mathrm{N}(8)-\mathrm{C}(10)$	58.9 (4)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.451 (10)		
$\mathrm{S}-\mathrm{O} A$	1.353 (9)	$\mathrm{O} A-\mathrm{S}-\mathrm{N}(4) A$	105.5 (5)
$\mathrm{S}-\mathrm{OB}$	1.546 (8)	$\mathrm{O} A-\mathrm{S}-\mathrm{N}(4) B$	67.0 (6)
$\mathrm{S}-\mathrm{N}(4) A$	1.790 (11)	$\mathrm{O} B-\mathrm{S}-\mathrm{N}(4) A$	142.7 (5)
$\mathrm{S}-\mathrm{N}(4) B$	1.542 (9)	$\mathrm{O} B-\mathrm{S}-\mathrm{N}(4) B$	101.8 (6)
$\mathrm{N}(4) A-\mathrm{C}(1) A$	1.48 (2)	$\mathrm{S}-\mathrm{N}(4) A-\mathrm{C}(1) A$	113.2 (9)
$\mathrm{N}(4) A-\mathrm{C}(2) A$	1.46 (2)	$\mathrm{S}-\mathrm{N}(4) A-\mathrm{C}(2) A$	119.8 (1.0)
$\mathrm{C}(1) A-\mathrm{C}(2) A$	1.40 (3)	$\mathrm{S}-\mathrm{N}(4) B-\mathrm{C}(1) B$	112.6 (1.0)
$\mathrm{N}(4) B-\mathrm{C}(1) B$	1.43 (2)	$\mathrm{S}-\mathrm{N}(4) B-\mathrm{C}(2) B$	$115 \cdot 3$ (8)
$\mathrm{N}(4) B-\mathrm{C}(2) B$	1.45 (2)		
$\mathrm{C}(1) B-\mathrm{C}(2) B$	1.45 (3)		
		$\mathrm{C}(1) A-\mathrm{N}(4) A-\mathrm{C}(2) A$	56.9 (1.0)
		$\mathrm{C}(1) B-\mathrm{N}(4) B-\mathrm{C}(2) B$	60.5 (1.2)

min. height in final difference synthesis +0.4 and -0.2 e $\AA^{-3} ;(\Delta / \sigma)_{\text {mean }}=0.09$; atomic scattering factors corrected for anomalous dispersion from Cromer \& Waber (1974). Calculations used SHELX76 (Sheldrick, 1976) and illustrations the ORTEP program (Johnson, 1965).

Discussion. Fractional coordinates and equivalent isotropic thermal parameters of non-H atoms are listed in Table 1.* Main interatomic distances and bond angles are given in Table 2.

The main feature of the structure of $\mathrm{SOaz}(W)$ is again the presence of two different conformations of the SOaz molecule, but instead of having two independent molecules perfectly ordered as in SOaz (II), $\mathrm{SOaz}(W A)$ and $\mathrm{SOaz}(W B)$ are randomly dispersed in the network. An ORTEP drawing (conformation A) is given in Fig. 1. Fig. 2 illustrates the packing of the SOaz and water molecules through the projection onto the (010) plane.

The part of the SOaz molecule closest to the water molecule is the moiety $\mathrm{S}<\mathrm{az}$ which is also the only disordered part of the molecule. The O is split on two distinct crystallographic sites (50% occupation each) just as are all the atoms of the aziridinyl moiety. Such a situation gives rise to two compatible conformations, $\operatorname{SOaz}(W A)$ and $\mathrm{SOaz}(W B)$ (Fig. 3). The dihedral angle between $\mathrm{N}(4) A-\mathrm{S}-\mathrm{O} A$ and $\mathrm{N}(4) B-\mathrm{S}-\mathrm{O} B$ alternations is 18.6°. The water molecule W is rather close to both $W-\mathrm{O} A$ and $W-\mathrm{OB}, 2.82$ and $3.01 \AA$, implying the likely existence of hydrogen bonding. Nevertheless it has not been possible to locate the true positions for the H atoms around W despite the presence of four small peaks in the difference Fourier

* Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39756 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Perspective view of the $\operatorname{SOaz}(W)$ molecule in conformation A.
maps situated at $0.9-1.00 \AA$. The disorder could be related to this hydrogen-bonding interaction not adopting predominantly one arrangement or the other.

Fig. 2. Projection onto the (010) plane of the $\mathrm{SOaz}(W)$ structure (H atoms omitted). Conformations A and B have been arbitrarily chosen.

Fig. 3. Geometry around the S atom (distances in $\dot{\mathrm{A}}$, angles in ${ }^{\circ}$).

SOaz(IIA)

Fig. 4. Comparison of flexibilities in SOaz forms.

Both A and B conformations of the $\operatorname{SOaz}(W)$ molecule can be directly compared with the previous one (Galy et al., 1981). Fig. 4 summarizes the extraordinary versatility of this molecule in the setting of its aziridinyl wings.

References

Cameron, T. S., Labarre, J.-F. \& Graffeuil, M. (1982). Acta Cryst. B38, 2000-2004.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.

Dermer, O. C. \& Ham, G. E. (1969). In Ethyleneimine and other
Aziridines. New York: Academic Press.
Galy, J., Enjalbert, R., van der Huizen, A. A., van de
Grampel, J. C. \& Labarre, J.-F. (1981). Acta Cryst. B37,
2205-2209.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge
National Laboratory, Tennessee.
Labarre, J.-F. (1982). Up-to-date Improvements in Inorganic Ring
Systems as Anticancer Agents. In Topics in Current Chemistry,
Vol. 102, pp. 1-88. Berlin: Springer Verlag.
Sheldrick, G. M. (1976). SHELX76. Program for crystal
structure determination. Univ. of Cambridge, England.

Structure of the $\mathbf{1 / 1 . 5}$ Complex Formed between the Bis(triphenylphosphoranediyl)ammonium cation (R^{+}) and 7,7,8,8-Tetracyano- p-quinodimethane (TCNQ), $\mathrm{C}_{\mathbf{3 6}} \mathrm{H}_{\mathbf{3} 0} \mathrm{NP}_{2}^{+} . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}^{-} \cdot \mathbf{0} \cdot \mathbf{5} \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot \mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{3}} \mathrm{N}$

By Joan Halfpenny
Department of Applied Chemical Sciences, Napier College, Colinton Road, Edinburgh EH10 5DT, Scotland

(Received 9 July 1984; accepted 21 September 1984)

Abstract

R^{+}(\mathrm{TCNQ})^{-}(\mathrm{TCNQ})_{0.5} \mathrm{CH}_{3} \mathrm{CN}, M_{r}=885\), triclinic, $\quad P \overline{1}, \quad a=8.84$ (1),$\quad b=16.70$ (1),$\quad c=$ $17 \cdot 16$ (1) $\AA, \quad \alpha=69.85$ (7),$\quad \beta=84.11$ (9),$\quad \gamma=$ 85.26 (9) ${ }^{\mathrm{D}}, \quad V=2365$ (6) $\AA^{3} ; ~ Z=2, D_{m}=1 \cdot 24, D_{x}$ $=1.24 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.7107 \AA, \quad \mu=$ $0 \cdot 105 \mathrm{~mm}^{-1}, F(000)=966$, room temperature, $R=$ $0.0625, R_{w}=0.056$ for 2833 diffractometer-measured intensities with $I>3 \sigma(I)$. The cation has the expected non-linear structure. The structural unit contains 1.5 TCNQ molecules, TCNQ (B) being at a centre of symmetry while TCNQ (A) is in a general position. The TCNQ molecules are stacked in groups of three, $A B A$. Within the triad the molecules are displaced so that there is overlap between the quinonoid double bond and the ring of the adjacent molecule. Individual triads are well separated without overlap. A molecule of solvent, methyl cyanide, is included in the structural unit.

Introduction. The compound was prepared as part of an investigation into the preparation of conducting and semi-conducting complexes of TCNQ with various cations (Ahmad, Bryce, Halfpenny \& Weiler, 1984). Its conductivity is that of a typical semi-conductor. The compound was considered worthy of structure determination owing to the large size of the cation, which is by far the most complex in a TCNQ compound studied by X-ray diffraction.

Experimental. Initially composition of compound unknown. Accurate cell dimensions from least-squares refinement of 12 strong reflections (Mo K $\alpha \theta \mathrm{min}$. 5, max. 17°), Enraf-Nonius CAD-4 4-circle diffractometer. Density by flotation indicated $Z=2.7604$ reflections measured, Stoe Stadi-2 2 -circle diffractometer, graphite-monochromatized Mo $K \alpha$ radiation; crystal $0.4 \times 0.5 \times 0.05 \mathrm{~mm}$, layers $h=0-8, k \pm 18$, $l \pm 19$, max. $\sin \theta / \lambda=0.595 \AA^{-1}$, separate standard for each layer measured every 10 reflections (intensity variation $<2 \%$). 7009 unique reflections ($R_{\mathrm{int}}=0.019$), 2833 with $I>3 \sigma(I)$ used for refinement. No absorption correction. Structure solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and refined using SHELX76 (Sheldrick, 1976) fullmatrix least squares on F magnitudes. Phenyl groups treated as rigid hexagons with $\mathrm{C}-\mathrm{C}=1.395 \AA$. Difference map showed one molecule of methyl cyanide in asymmetric unit. Hydrogen atoms, including those of methyl cyanide, introduced at calculated positions ($\mathrm{C}-\mathrm{H}=1.08 \AA$) and all H within each molecule or phenyl group given same isotropic U value. All non- H atoms except $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(13)$, $\mathrm{C}(14), \mathrm{C}(19), \mathrm{C}(20), \mathrm{C}(25), \mathrm{C}(26), \mathrm{C}(31)$ and $\mathrm{C}(32)$ given anisotropic $U_{i j}$. These exceptions were necessary on account of limited capacity of SHELX program $[2 N$ (anis.) $+N$ (iso.) $\leq 160]$, the basis for exception © 1985 International Union of Crystallography

[^0]: * Part III: Cameron, Labarre \& Graffeuil (1982).
 \dagger Author to whom correspondence should be addressed.

